CBC-1966-U

## CBC-1966-U

M. A. / M. Sc. Third Semester

(End Semester)

Examination Dec., 2019

**MATHEMATICS** 

Paper - MTS- CC- 324

(Operations Research-I)

Time: Three Hours]

[ Maximum Marks : 60

**Note:** The question paper is divided into three sections. Attempt questions as per direction.

[ P. T. O.

## SECTION - A

(Objective Type Questions) 10×1=10

Note: Choose the correct option.

- Making a pivot in the simplex method indicates
   the appropriate:
  - (a)  $Z_j C_j$  row
  - (b) Optimal column
  - (c) Quantity column
  - (d) None of these
- For a maximization problem, the objective function coefficient for an artificial ariable is:
  - (a) +M
  - (b) -M
  - (c) Zero
  - (d) None of these

https://www.dhsgsu.com

https://www.dhsgsu.com

- If an optimal solution is degenrate, then
  - (a) There are alternative optimal solution
  - (b) The solution is infeasible
  - (c) The solution is of no use to the decision maker
  - (d) None of these
- 4. If a dual problem has an unbounded solution, primal has:
  - (a) No feasible solution
  - (b) Unbounded solution
  - (c) Feasible solution
  - (d) None of these
- Branch and bound method divides the feasible solution space into smaller parts by :
  - (a) Branching
  - (b) Bounding

[ P. T. O.

- (c) Enumerating
- (d) All of the above
- 6. When there are "m" rows and "n" colums in a transport problem, degeneracy is said to occur when the number of allocations is:
  - (a) Less than m+n-1
  - (b) Greater than m+n-1
  - (c) Equal to m+n-1
  - (d) Less than m-n+1
- 7. The another term commonly used for activity stock time is :
  - (a) Total float
  - (b) Free float
  - (c) Independent float
  - (d) All of the above https://www.dhsgsu.com

6

- The critical path satisfy the condition that :
  - (a)  $E_i = L_i$  and  $E_i = L_i$
  - (b)  $L_j E_i = L_i L_j$
  - (c)  $L_i E_i = L_i E_j = C$
  - (d) All of the above
- 9. If there were "n" workers and "n" jobs, there would be :
  - (a) <u>|n</u> solutions
  - (b) <u>[n-1]</u> solutions
  - (c)  $(\underline{n})^n$  solutions
  - (d) n solutions
- 10. If the earliest start time for an activity is 8 weeks, the latest finish time is 37 weeks and the duration time of the activity is 11 weeks, then the total float is equal to:

[ P. T. O.

(a) 18 weeks

CBC-1966-U

- (b) 14 weeks
- (c) 56 weeks
- (d) 40 weeks.

## SECTION - B

(Short Answer Type Questions) 4×5=20

Note: Attempt any four questions. Each question carries five marks.

- Why industry is demanding operation Research?
- Solve the linear programming problem graphically :

Max. 
$$Z = 8000x_1 + 7000x_2$$
  
Subjected to  $3x_1 + x_2 \le 66$   
 $x_1 + x_2 \le 45$   
 $x_1 \le 20$   
 $x_2 \le 40$   
and  $x_1, x_2 \ge 0$ 

- 3/ Write algorithm to find the solution of an integer programming problem by Gomory's cutting plane method.
- Solve the minimal assignment problem whose effectiveness matrix is :

|    | _1 | 2 | 3 | 4 |
|----|----|---|---|---|
| 1  | 2  | 3 | 4 | 5 |
| H  | 4  | 5 | 6 | 7 |
| Ш  | 7  | 8 | 9 | 8 |
| Νį | 3  | 5 | 8 | 4 |

- Explain North-West lorner method.
- 6. What are the various review techniques?

## **SECTION - C**

(Long Answer Type Questions) 3×10=30

Note: Attempt any three questions. Each question carries ten marks.

- Discuss various kind of modelling in operations research.
- Solve the linear programming problem by two-phase method.

Minimize 
$$Z = x_1 + x_2$$
  
Subjected to constraints
$$2x_1 + x_2 \ge 4$$

$$x_1 + 7x_2 \ge 7$$
and  $x_1, x_2 \ge 0$ .

Find the optimum integer solution to the linear programming problem:

Max 
$$Z=x_1+2x_2$$
  
Subjected  $2x_2 \le 7$   
 $x_1+x_2 \le 7$   
 $2x_1 \le 11$   
 $x_1 \ge 0, x_2 \ge 0$  and  $x_1, x_2$  are integer

- From following table construct PERT and compute:
  - (i) T<sub>E</sub> and T<sub>L</sub>
  - (ii) Float of each activity
  - (iii) Critical path and its duration.

| Activity | Time in weeks |
|----------|---------------|
| 1-2      | 4             |
| 1-3      | 1.            |
| 2-4      | 1             |
| 3-4      | 1             |
| 8-5      | 6.            |
| 4-9      | 5             |
| 5-6      | 4             |
| 5-7      | 8             |
| 6-8      | 1             |
| 7-8      | 2.            |
| 8-9      |               |
|          | .1            |
| 8-10     | 8             |
| 9-10     | 7.            |

5. Find the optimal solution of following transportation problem:

|                | W, | $W_2$ | W <sub>3</sub> | W, | $W_{\!s}$ | W <sub>e</sub> |   |
|----------------|----|-------|----------------|----|-----------|----------------|---|
| F,             | 5  | 3     | 7              | 3  | 8         | 5              | 3 |
| F <sub>2</sub> | 5  | 6     | 12             | 5  | 7         | 11             | 4 |
| F <sub>3</sub> | 2  | 1     | 3              | 4  | 8         | 2              | 2 |
| F <sub>4</sub> | 9  | 6     | 10             | 5  | 10        | 9              | 8 |
| Requirement    | 3  | 3     | 6              | 12 | 1         | 2              |   |

https://www.dhsgsu.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भंजे और 10 रुपये पार्ये, Paytm or Google Pay से