CBD-5426-W

B. A./B. Sc./B. Sc. B. Ed. (Fourth Semester) (End Semester) EXAMINATION, 2022

> MATHEMATICS MTS-SE-411 (Vector Calculus)

Time: Three Hours [Maximum Marks: 60

Note: The questions paper is divided into three Sections. Attempt questions as per direction.

Section-A

(Objective Type Questions)

Note: Choose the correct option. Each question carries 1 mark. $10 \times 1 = 10$

- 1. The value of $[a \ a \ b]$ is:
 - (a) 0

P. T. O.

- (b) 1
- (c) -1
- (d) None of the above
- 2. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are coplanar vectors, the value of $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$ is:
 - (a) 0
 - (b) 3
 - (c) 1
 - (d) None of the above
- 3. Unit vector and its derivative are:
 - (a) Parallel
 - (b) Orthogonal
 - (c) Along the same direction
 - (d) None of the above

[4]

4. If $\vec{r} = a \cos f \vec{i} + a \sin t \vec{j} + bt \vec{k}$, then $\left| \frac{d\vec{r}}{dt} \right|$

is:

- (a) $a^2 + b^2$
- (b) a^2
- (c) b^2
- (d) $\sqrt{a^2 + b^2}$
- 5. If φ is a differentiable scalar point function, then the value of div grad \(\phi \) is:
 - (a) 0
 - (b) ¢
 - (c) ∇²φ
 - (d) $\overrightarrow{0}$
- 6. A vector point function F is said to be solenoidal if and only if:
 - (a) $\nabla \nabla \cdot \vec{F} = 0$

P. T. O.

(b)
$$\nabla^2 \overrightarrow{F} = 0$$

- (c) $\nabla \cdot \overrightarrow{F} = 0$
- (d) $\nabla \times \overrightarrow{F} = 0$
- 7. If div F of any vector F is zero, then it is:
 - (a) invariant
 - (b) irrotational
 - (c) solenoidal
 - (d) harmonic
- 8. For a constant vector v, value of curl v is:
 - (a) 3
 - (b) 0
 - (c) 3ν
 - (d) 1
- 9. If $f(t) = |t| \stackrel{\rightarrow}{i}$ then the value of f'(0) is:
 - (a) i
 - (b) 0
 - (c) does not exist
 - (d) None of the above

10. Any vector point function \overrightarrow{F} is irrotational if:

- (a) $\nabla \times \overrightarrow{F} = 0$
- (b) $\nabla \cdot \overrightarrow{F} = 0$
- (c) $\nabla \cdot (\nabla F) = 0$
- (d) $\nabla \mathbf{F} = 0$

Section-B

(Short Answer Type Questions)

Note: Attempt any four questions. Each question carries 5 marks. 4×5=20

- 1. Prove that necessary condition that $\overrightarrow{a}(t)$ is a vector of constant magnitude is $\overrightarrow{a} \cdot \frac{d\overrightarrow{a}}{dt} = 0$.
- 2. Define cross product of two vectors and find r^2 .

3. Find div (curl \overrightarrow{F}), where $\overrightarrow{F} = x^2y \overrightarrow{i} + xy \overrightarrow{j} + 2yz \overrightarrow{k}$.

[6]

- Write a note on various properties of scalar product of two vectors.
- 5. If $\overrightarrow{F} = xy^2\hat{i} + 2x^2yz\hat{j} 3yz^2\hat{k}$, then find div \overrightarrow{F} and at (1, -1, 1).
- 6. Prove that curl grad $r^m = \nabla \times \nabla r^m = 0$.

Section-C

(Long Answer Type Questions)

Note: Attempt any *three* questions. Each question carries 10 marks. $3 \times 10 = 30$

1. Show that:

$$\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$$

2. Find the unit vector normal to the $\phi = x^2 + y^2 + z^2$ at (1, -1, 2).

P. T. O.

- 3. Find the directional derivative of $f = x^2 + y^2 + z^2 \text{ at } (1, 2, 3).$
- 4. If \overrightarrow{a} is a constant vector, show that :

$$\operatorname{curl}(\overrightarrow{r} \times \overrightarrow{a}) = -2 \overrightarrow{a}$$

5. A particle moves along a curve $x = e^{-t}$, $y = 2 \cos 3t$, $z = 2 \sin 3t$, where t is time, then find magnitude of velocity and acceleration at t = 0.

https://www.dhsgsu.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से

. . .

CBD-5426-W