CBC-4380-W

B. A./B. Sc. (Third Semester)

(End Semester)

EXAMINATION, Dec., 2021

STATISTICS

Paper-STAT-CC-311

(Sampling Theory and Distribution)

Time: Three Hours] [Maximum Marks: 60

Note: The question paper is divided into three

Sections. Attempt the questions as per
direction.

Section-A

(Objective Type Questions)

Note: Choose the correct answer. Each question carries 1 mark.

- 1. If sample n is sufficiently large, then $\overline{x} \sim N\left(\mu, \frac{\sigma_2}{n}\right)$, even sample is not taken from normal population, by:
 - (a) W. L. L.
 - (b) S. L. L. N.
 - (c) Central limit theorem
 - (d) Chebyshev's inequality
- 2. Let $\{X_n\}$ be a sequence of random variables we say that X_n converges almost surely to a random variable X if and only if:

(a)
$$p[w: X_n(w) \to X(w) \text{ as } n \to \infty] = 0$$

(b)
$$p[w: X_n(w) \to X(w) \text{ as } n \to \infty] = 1$$

(c)
$$p[|X_n - X| > \varepsilon] \to 0 \text{ as } n \to \infty$$

(d)
$$p[|X_n - X| < \varepsilon] \to 0 \text{ as } n \to \infty$$

- 3. Which among the following is true?
 - (a) $X_n \xrightarrow{P} X, X_n \xrightarrow{P} Y$ $\Rightarrow (Y_n X)(X_n Y) \xrightarrow{P} 0$
 - (b) $X_n \xrightarrow{P} X$, $Y_n \xrightarrow{P} Y \Rightarrow X_n X_n$
 - (c) $X_n \xrightarrow{P} X \to X_n^2 \xrightarrow{P} X^2$
 - (d) All of the above are true.
- 4. The M. G. F. of χ^2 -distribution with n d.f. is given by:
 - (a) $(1-t)^{-n/2}$
 - (b) $(1-2t)^{-n/2}$
 - (c) $(1-3t)^{-n/2}$
 - (d) $(1-2t)^{n/2}$

- 5. If X and Y are two independent Chi-square variates with v_1 and v_2 d. f., the F-statistics is defined by:
 - (a) $\frac{X}{v_2}$ $\frac{Y}{v_1}$
 - (b) $\frac{X}{v_1}$ v_2
 - (c) $\frac{X}{(v_1-1)}$ $\frac{Y}{(v_2-1)}$
 - (d) None of the above
- 6. Null hypothesis is called when:
 - (a) P (Rejecting H_0 when it is true) = α
 - (b) P (Rejecting H_0 when it is false) = α
 - (c) P (Accepting H_0 when it is true) = β
 - (d) P (Accepting H_0 when it is false) = α

https://www.dhsgsu.com P. T. Q.

7. Ratio estimator is more efficient than usual mean per unit estimator, if:

(a)
$$\rho = \frac{1}{2} \frac{c_x}{c_y}$$

(b)
$$\rho < \frac{1}{2} \frac{c_x}{c_y}$$

(c)
$$\rho > \frac{1}{2} \frac{c_x}{c_y}$$

(d)
$$\rho < \frac{c_x}{c_y}$$

8. Product estimator is used when:

(a)
$$\rho(XY) = 0$$

(b)
$$\rho(XY) = \text{negative}$$

(c)
$$\rho(XY) = positive$$

- (d) not concerned with ρ
- 9. Product estimator is more efficient than usual mean per unit estimator, if:

(a)
$$\rho = -\frac{1}{2} \frac{c_x}{c_y}$$

(b)
$$\rho < -\frac{1}{2} \frac{c_x}{c_y}$$

(c)
$$\rho > \frac{1}{2} \frac{c_x}{c_y}$$

(d)
$$\rho < \frac{1}{2} \frac{c_x}{c_y}$$

10. Auxiliary information was first used by:

- (a) Searls S.
- (b) Goodmen
- (c) Cocharan, W. G.
- (d) Fisher

Section-B-

(Short Answer Type Questions)

Note: Attempt any four questions. Each question carries 5 marks.

- 1. Write a note on various modes of convergence.
- 2. Write a short note on regression estimator.
- 3. Explain the following:
 - (i) Null and Alternative hypothesis
 - (ii) First and second kind error
 - (iii) Critical region and level of significance

P. T. O.

https://www.dhsgsu.com

https://www.dhsgsu.com

- 4. State and prove Chebyshev's inequality.
- 5. If S be a sample, then prove that:

$$P(i \in S) = \frac{n}{N}$$

i. e. ith unit include in the sample is $\frac{n}{N}$.

6. If $X \sim \chi_{n_1}^2$ and $X_2 \sim \chi_{n_2}^2$, then prove that :

$$\frac{X_1}{X_2} \sim \beta_2 \left(\frac{n_1}{2}, \frac{n_2}{2}\right).$$

Section-C

(Long Answer Type Questions)

Note: Attempt any three questions. Each question carries 10 marks.

- State and prove central limit theorem using M. G. F. method.
- Write a detailed note on Organisation of Survey Sampling.

3. If $(\overline{y}_n)_{WOR}$ be usual estimator, then prove that:

$$V(\overline{y}_n)_{WOR} = \left(\frac{1}{n} - \frac{1}{N}\right)S^2$$

Also compare its efficiency over $(\bar{y}_n)_{WR}$.

4. Explain the method of stratified random sampling and prove that:

$$V(\overline{y}_{st})_p \ge V(\overline{y}_{st})_N$$

Define ratio estimator and prove that its MSE is given by :

$$MSE\left(\hat{\overline{y}}\right) = \left(\frac{p-f}{n}\right)\bar{y}^{2}$$

$$\left[C_{x}^{2} + C_{y}^{2} - 2\rho C_{x} C_{y}\right]$$

https://www.dhsgsu.com Whatsapp @ 9300930012 Send your old paper & get 10/-

अपने पुराने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से

CBC-4380-W

150

https://www.dhsgsu.com

P. T. O.

https://www.dhsgsu.com